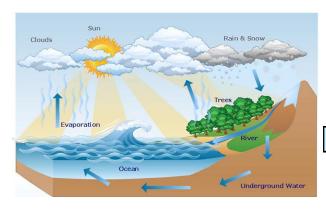


BECKER-JIBA SPECIAL UTILITY DISTRICT

2022 Annual Drinking Water Quality Report (Consumer Confidence Report)


Annual Water Quality Report for the period of January 1 to December 31, 2022, PWS ID Number TX 1290011.

BECKER-JIBA SUD purchases water from the City of Kaufman. The City of Kaufman purchases surface water from North Texas Municipal Water District at Lake Lavon located in Collin County or Lake Tawakoni in Hunt, Rains, and Van Zandt Counties.

TCEQ completed a Source Water Susceptibility for all drinking water systems that own their sources. This report describes the susceptibility and types of constituents that may come into contact with the drinking water source based on human activities and natural conditions. The system(s) from which we purchase our water received the assessment report. For more information on source water assessments and protection efforts at our system contact:

<u>Operations Manager</u>: Clayton Dickerson <u>Office Phone Number</u>: (903)-498-3592

The Cycle of Water

Source of Drinking Water: The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals, and in some cases, radioactive material, and can pickup substances resulting from the presence of animals or from human activity. Drinking water, including bottled water, may

reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPAS Safe Drinking Water Hotline at (800)-426-4791.

Addition Health and Lead Information below:

In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain

contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water which must provide the same protection for public health. Contaminants may be found in drinking water that may case taste, color or odor problems. These types of problems are not necessarily caused for health concerns. For more information on taste, odor, or color of drinking water, please contact the system's business office. You may be more vulnerable than the general population to certain microbial contaminants, such as Cryptosporidium, in drinking water, infants, some elderly, or immunocompromised persons such as those undergoing chemotherapy for cancer; persons who have undergone organ transplants; those who are undergoing treatment with steroids; and people with HIV/AIDS or other immune system disorders, can be particularly at risk from infections. You should seek advice about drinking water from your physician or health care providers. Additional guidelines on appropriate means to lessen the risk of infection by Cryptosporidium are available from the **Safe Drinking Wa**ter Hotline (800)-426-4791).

Lead in Home Plumbing: If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. We are responsible for providing high quality drinking water, but we cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 minutes to 2 minutes before using water for drinking or cooking. If you are concerned about lead in our water, you may wish to have your water tested Information on lead in drinking water, testing methods, and steps you can take

to minimize exposure is available from the **Safe Drinking Water Hot line**

or at http://www.epa.gov/safewater/lead.

En Español

Este informe incluye information important sobre el agua potable. Si tiene preguntas o comentarios sobre éste informe en español, favor de llamar al tel. (903) 498-3592 para hablar con una persona bilingüe en español.

Information about Source Water Assessments

- I. Source Water Susceptibility Assessment for your drinking water sources(s) is currently being updated by the Texas Commission on Environmental Quality. This information describes the susceptibility and types of constituents that may come into contact with your drinking water source based on human activities and natural conditions. The information contained in the assessment allows us to focus source water protection strategies. For more information about your sources of water, please refer to the Source Water Assessment Viewer available at the following URL: http://gis3.tceq.state.tx.us/swav/Controller/index.jsp? wtrsrc=
- Further details about sources and source-water assessments are available in Drinking Water Watch at the following URL: http://dww.tceq.texas.gov./DWW

Source Water Name: **SW FROM NORTH TEXAS MWD**

I/C WITH TX0430044

Type of Water: <u>SW</u>

Report Status: <u>Active</u> <u>Location: Lake Lavon</u>

Contaminants that may be present in source water include:

-Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.

Inorganic contaminants, such as salt and metals, which can be naturally-occurring or result from urban storm water runoff, industrial or domestic waste water discharge, oil and gas production, mining, and farming.

Pesticides and herbicides, which can come from a variety of sources such as agriculture, urban storm water runoff, and residential uses.

Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, and septic systems.

Water Conservation

Our usable water supply is finite (we do not have an endless supply) so its up to each and every one of us to save water. Residents can do their part in conserving water and saving money in the process by becoming conscious of the amount of water your household is using. And by looking for ways to use less whenever possible. Here are a few tips:

- Automatic dishwashers use 15 gallons for every cycle, regardless of how many dishes are loaded. So make sure to load it to capacity.
- Turn off the tap when brushing your teeth.
- Check the faucets in the house for leaks. A slow drip can waste 15 to 20 gallons a day. Fix it and you can save almost 6,000 gallons per year.
- Check your toiles for leaks by putting a few drops of food coloring in the tank. Watch for a few minutes to see if the color shows up in the bowl. It is not uncommon to lose up to 100 gallons a day from an invisible toilet leak. Fix it and save more than 30,000 gallons a year.
- Use your water meter to detect hidden leaks. Simply turn off all taps and water-using appliances. Then check the meter after 15 minutes. If it moved, you have a leak.

Water Main Flushing

Distribution mains (pipes) convey water to homes, business, and hydrants in your neighborhood. The water entering distribution mains is of very high quality; however, water quality can deteriorate in areas of the distribution mains over time. Water mains flushing is the process of cleaning the interior of water distribution mains by sending a rapid flow of water through the mains. Flushing maintains water quality in several ways. For example, flushing removes sediments like iron and manganese. Although iron and manganese do not themselves pose a health concerns, they can effect the taste, clarity, and color of the water. Additionally, sediments can shield microorganisms from the disinfecting power of the chlorine, contributing to the growth of microorganisms within the distribution mains. Flushing helps remove stale water and ensures the presence of fresh water with sufficient dissolved oxygen and disinfectant levels, and an acceptable taste and smell. During flushing operations in your neighborhood, some short-term deterioration of water quality, through uncommon, is possible. You should avoid tap water for household use as such times. If you do use the tap., allow your cold water to run for a few minutes at full velocity before use, and avoid using hot water, to prevent sediment accumulation in your hot water tank. Please contact us if you have any questions or if you would like more information on our water main flushing schedule.

Water Quality Test Results:

<u>Definitions:</u> the following tables contain scientific terms and measures, some of which may require explanation.

Avg: Regulatory compliance with some MCLs are based on running annual average of monthly samples.

Maximum Contaminant Level (MCL):

The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

Level I Assessment: A level I assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.

Maximum Contaminant Level Goal (MCLG):

The level of a contaminant in drinking water below which there is no known or expected health risk. MCLGs allow for a margin of safety.

Level 2 Assessment: A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an E. coli MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.

Maximum Residual Disinfectant Level (MRDL)

The highest level of disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG)

The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contamination.

MFL million fibers per liter (a measure of asbestos)

NA: not applicable.

<u>mrem:</u> millirems per year (a measure of radiation absorbed by the body).

NTU nephelometric turbidity units (a measure of turbidity)

pCi/L picocuries per liter (a measure of radioactivity).

ppb: micrograms per liter or parts per billion-or one ounce in 7,350,000 gallons of water.

ppm: milligrams per liter or pars per million-or one ounce in 7,350 gallons of water.

TT (Treatment Technique): A required process intended to reduce the level of a contaminant in drinking water.

ppt parts per trillion, or nanograms per liter (ng/L)

ppq parts per quadrillion, or pictograms per liter (pg/L)

Becker-Jiba Special Utility District

Water Quality Test Results for Year 2022

Lead and Copper	Date Sampled	MCLG	Action Level (AL)	90th Percentile	# Sites Over AL	Units	Violation	Likely Source of Contamination
Copper	9/28/2022	1.3	1.3	0.0518	0	ppm	N	Erosion of natural deposits; Leaching from wood preservatives Corrosion of household plumbing systems.
Lead	9/27/2022	0	15	0.0523	0	ppb	N	Corrosion of household plumbing systems; Erosion of natural deposits.
Disinfection By-Products	Collection Date	Highest Level Detected	Range of Individual	MCLG	MCL	Units	Violation	Likely Source of Contamination
Haloacetic Acids (HAA5)	2022	27.4	12525.2	No goal for the total	60	ppb	N	By-product of drinking water disinfection.
The value in the Highest Level or A	verage Detected co	olumn is the highe	st average of all H	AA5 sample results	collected at a loc	ation over a year'		
Total Trihalomethanes (TTHM)	2022	53.3	20.4-51.4	No goal for the total	80	ppb	N	By-product of drinking water disinfection.
The value in the Highest Level or A	verage Detected co	olumn is the highe	st average of all TT	HM sample result	s collected at a loc	ation over a year'		
Inorganic Contaminants	Collection Date	Highest Level Detected	Range of Individual	MCLG	MCL	Units	Violation	Likely Source of Contamination
Nitrate [measured as Nitrogen]	2022	0.951	0.00-0.951	10	10	ppm	N	Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits.
Disinfectant Residual	Year	Average Level	Range of Levels Detected	MRDL	MRDLG	Unit of Measure	Violation (Y/N)	Source in Drinking Water
Chloramines	2022	2.16	0.79-4.00	4	4	ppm	N	Water additive used to control microbes.

City of Kaufman-CCR Water Quality Data for Year 2022

	Coliform Bacteria										
Maximum Contaminant Level Goal	Total Coliform Maximum Contaminant Level	Highest No. of Positive	Fecal Coliform or E. Coli Maximum Contaminant Level	Total No. of Positive E. Coli or Fecal Coliform Samples	Violation	Likely Source of Contamination					
0	0 1 positive monthly sample 0 0 0 N Naturally present in the environment.										
NOTE: Reported monthly tests for	IOTE: Reported monthly tests found no fecal coliform bacteria. Coliforms are bacteria that are naturally present in the environment and are used as an indicator that other,										

Regulated Contaminants

Disinfectants and Disinfection By-Products	Collection Date	Highest Level Detected	Range of Levels Detected	MCLG	MCL	Units	Violation	Likely Source of Contamination
Total Haloacetic Acids (HAA5)	2022	19.7	11.2-20.3	No goal for the total	60	ppb	No	By-product of drinking water disinfection.
Total Trihalomethanes (TTHM)	2022	47.7	20.1-54.3	No goal for the total	80	ppb	No	By-product of drinking water disinfection.
Bromate	2022	4.9	4.9 - 4.9	5	10	ppb	No	By-product of drinking water ozonation.

NOTE: Not all sample results may have been used for calculating the Highest Level Detected because some results may be part of an evaluation to determine where compliance

sampling should occur in the future. TCEQ only requires one sample annually for compliance testing. For Bromate, compliance is based on the running annual average.

Inorganic Contaminants	Collection Date	Highest Level Detected	Range of Levels Detected	MCLG	MCL	Units	Violation	Likely Source of Contamination
Antimony	2022	Levels lower than detect level	0 - 0	6	6	ppb	No	Discharge from petroleum refineries; fire retardants; ceramics; electronics; solder; and test addition.
Arsenic	2022	Levels lower than detect level	0 - 0	0	10	ppb	No	Erosion of natural deposits; runoff from orchards; runoff from glass and electronics production wastes.
Barium	2022	0.061	0.060 - 0.061	2	2	ppm	No	Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits.
Beryllium	2022	Levels lower than detect level	0 - 0	4	4	ppb	No	Discharge from metal refineries and coal-burning factories; discharge from electrical, aerospace, and defense industries.
Cadmium	2022	Levels lower than detect level	0 - 0	5	5	ppb	No	Corrosion of galvanized pipes; erosion of natural deposits; discharge from metal refineries; runoff from waste batteries and paints.
Chromium	2022	Levels lower than detect level	0 - 0	100	100	ppb	No	Discharge from steel and pulp mills; erosion of natural deposits.
Cyanide	2022	2022	Levels lower than detect level	0 - 0	200	ppb	No	Discharge from steel/metal factories; Discharge from plastics and fertilizer factories.
Fluoride	2022	0.688	0.278 - 0.688	4	4	ppm	No	Erosion of natural deposits; water additive which promotes strong teeth; discharge from fertilizer and aluminum factories.
Mercury	2022	Levels lower than detect level	0 - 0	2	2	ppb	No	Erosion of natural deposits; discharge from refineries and factories; runoff from landfills; runoff from cropland.
Nitrate (measured as Nitrogen)	2022	0.439	0.158 - 0.439	10	10	ppm	No	Runoff from fertilizer use; leaching from septic tanks; sewage; erosion of natural deposits.
Selenium	2022	Levels lower than detect level	0 - 0	50	50	ppb	No	Discharge from petroleum and metal refineries; erosion of natura deposits; discharge from mines.
Thallium Nitrate Advisory: Nitrate in drinki	2022	Levels lower than detect level	0 - 0	0.5	2	ppb	No	Discharge from electronics, glass, and leaching from ore- processing sites; drug factories.

INITITATE ADVISOry: Nitrate in drinking water at levels above 10 ppm is a health risk for infants of less than six months of age. High nitrate levels in drinking water can cause blue baby syndrome. Nitrate levels may rise quickly for short periods of time because of rainfall or agricultural activity. If you are caring for an infant you should ask advice from your health care provider.

Radioactive Contaminants	Collection Date	Detected	Range of Levels Detected	MCLG	MCL	Units	Violation	Likely Source of Contamination
Beta/photon emitters	2022	4.7	4.7 - 4.7	0	50	pCi/L	No	Decay of natural and man-made deposits.
Gross alpha excluding radon and uranium	2022	Levels lower than detect level	0 - 0	0	15	pCi/L	No	Erosion of natural deposits.
Radium	2022	Levels lower than detect level	0 - 0	0	5	pCi/L	No	Erosion of natural deposits.

City of Kaufman -CCR Water Quality Data for Year 2022 (Cont.)

Synthetic organic contaminants						-		,
including pesticides and herbicides	Collection Date	Highest Level Detected	Range of Levels Detected	MCLG	MCL	Units	Violation	Likely Source of Contamination
2, 4, 5 - TP (Silvex)	2022	Levels lower than detect level	0 - 0	50	50	ppb	No	Residue of banned herbicide.
2, 4 - D	2022	Levels lower than detect level	0 - 0	70	70	ppb	No	Runoff from herbicide used on row crops.
Alachlor	2022	Levels lower than detect level	0 - 0	0	2	ppb	No	Runoff from herbicide used on row crops.
Aldicarb	2022	Levels lower than detect level	0 - 0	1	3	ppb	No	Runoff from agricultural pesticide.
Aldicarb Sulfone	2022	Levels lower than detect level	0 - 0	1	2	ppb	No	Runoff from agricultural pesticide.
Aldicarb Sulfoxide	2022	Levels lower than detect level	0 - 0	1	4	ppb	No	Runoff from agricultural pesticide.
Atrazine	2022	0.12	0.10 - 0.12	3	3	ppb	No	Runoff from herbicide used on row crops.
Benzo (a) pyrene	2022	Levels lower than detect level	0 - 0	0	200	ppt	No	Leaching from linings of water storage tanks and distribution lines.
Carbofuran	2022	Levels lower than detect level	0 - 0	40	40	ppb	No	Leaching of soil fumigant used on rice and alfalfa.
Chlordane	2022	Levels lower than detect level	0 - 0	0	2	ppb	No	Residue of banned termiticide.
Dalapon	2022	Levels lower than detect level	0 - 0	200	200	ppb	No	Runoff from herbicide used on rights of way.
Di (2-ethylhexyl) adipate	2022	Levels lower than detect level	0 - 0	400	400	ppb	No	Discharge from chemical factories.
Di (2-ethylhexyl) phthalate	2022	Levels lower than detect level	0 - 0	0	6	ppb	No	Discharge from rubber and chemical factories.
Dibromochloropropane (DBCP)	2022	Levels lower than detect level	0 - 0	0	200	ppt	No	Runoff / leaching from soil fumigant used on soybeans, cotton, pineapples, and orchards.
Dinoseb	2022	Levels lower than detect level	0 - 0	7	7	ppb	No	Runoff from herbicide used on soybeans and vegetables.
Endrin	2022	Levels lower than detect level	0 - 0	2	2	ppb	No	Residue of banned insecticide.
Ethylene dibromide	2022	Levels lower than detect level	0 - 0	0	50	ppt	No	Discharge from petroleium refineries.
Heptachlor	2022	Levels lower than detect level	0 - 0	0	400	ppt	No	Residue of banned termiticide.
Heptachlor epoxide	2022	Levels lower than detect level	0 - 0	0	200	ppt	No	Breakdown of heptachlor.
Hexachlorobenzene	2022	Levels lower than detect level	0 - 0	0	1	ppb	No	Discharge from metal refineries and agricultural chemical factories.
Hexachlorocyclopentadiene	2022	Levels lower than detect level	0 - 0	50	50	ppb	No	Discharge from chemical factories.
Lindane	2022	Levels lower than detect level	0 - 0	200	200	ppt	No	Runoff / leaching from insecticide used on cattle, lumber, and gardens.
Methoxychlor	2022	Levels lower than detect level	0 - 0	40	40	ppb	No	Runoff / leaching from insecticide used on fruits, vegetables, alfalfa, and livestock.
Oxamyl [Vydate]	2022	Levels lower than detect level	0 - 0	200	200	ppb	No	Runoff / leaching from insecticide used on apples, potatoes, and tomatoes.
Pentachlorophenol	2022	Levels lower than detect level	0 - 0	0	1	ppb	No	Discharge from wood preserving factories.
Picloram	2022	Levels lower than detect level	0 - 0	500	500	ppb	No	Herbicide runoff.
Simazine	2022	Levels lower than detect level	0 - 0	4	4	ppb	No	Herbicide runoff.
Toxaphene	2022	Levels lower than detect level	0 - 0	0	3	ppb	No	Runoff / leaching from insecticide used on cotton and cattle.
Volatile Organic Contaminants	Collection Date	Highest Level Detected	Range of Levels Detected	MCLG	MCL	Units	Violation	Likely Source of Contamination
1, 1, 1 - Trichloroethane	2022	Levels lower than detect level	0 - 0	200	200	ppb	No	Discharge from metal degreasing sites and other factories.
1, 1, 2 - Trichloroethane	2022	Levels lower than detect level	0 - 0	3	5	ppb	No	Discharge from industrial chemical factories.
1, 1 - Dichloroethylene	2022	Levels lower than detect level	0 - 0	7	7	ppb	No	Discharge from industrial chemical factories.
1, 2, 4 - Trichlorobenzene	2022	Levels lower than detect level	0 - 0	70	70	ppb	No	Discharge from textile-finishing factories.
1, 2 - Dichloroethane	2022	Levels lower than detect level	0 - 0	0	5	ppb	No	Discharge from industrial chemical factories.
1, 2 - Dichloropropane	2022	Levels lower than detect level	0 - 0	0	5	ppb	No	Discharge from industrial chemical factories.
Benzene	2022	Levels lower than detect level	0 - 0	0	5	ppb	No	Discharge from factories; leaching from gas storage tanks and landfills.
Carbon Tetrachloride	2022	Levels lower than detect level	0 - 0	0	5	ppb	No	Discharge from chemical plants and other industrial activities.
		G0.000 10 VOI			-			

City of Kaufman-CCR Water Quality Data for Year 2022 (Cont.)

Volatile Organic Contaminants	Collection Date	Detected	Range of Levels Detected	MCLG	MCL	Units	Violation	Likely Source of Contamination
Chlorobenzene	2022	Levels lower than detect level	0 - 0	100	100	ppb	No	Discharge from chemical and agricultural chemical factories.
Dichloromethane	2022	Levels lower than detect level	0 - 0	0	5	ppb	No	Discharge from pharmaceutical and chemical factories.
Ethylbenzene	2022	Levels lower than detect level	0 - 0	0	700	ppb	No	Discharge from petroleum refineries.
Styrene	2022	Levels lower than detect level	0 - 0	100	100	ppb	No	Discharge from rubber and plastic factories; leaching from landfills.
Tetrachloroethylene	2022	Levels lower than detect level	0 - 0	0	5	ppb	No	Discharge from factories and dry cleaners.
Toluene	2022	Levels lower than detect level	0 - 0	1	1	ppm	No	Discharge from petroleum factories.
Trichloroethylene	2022	Levels lower than detect level	0 - 0	0	5	ppb	No	Discharge from metal degreasing sites and other factories.
Vinyl Chloride	2022	Levels lower than detect level	0 - 0	0	2	ppb	No	Leaching from PVC piping; discharge from plastics factories.
Xylenes	2022	Levels lower than detect level	0 - 0	10	10	ppm	No	Discharge from petroleum factories; discharge from chemical factories.
cis - 1, 2 - Dichloroethylene	2022	Levels lower than detect level	0 - 0	70	70	ppb	No	Discharge from industrial chemical factories.
o - Dichlorobenzene	2022	Levels lower than detect level	0 - 0	600	600	ppb	No	Discharge from industrial chemical factories.
p - Dichlorobenzene	2022	Levels lower than detect level	0 - 0	75	75	ppb	No	Discharge from industrial chemical factories.
trans - 1, 2 - Dicholoroethylene	2022	Levels lower than detect level	0 - 0	100	100	ppb	No	Discharge from industrial chemical factories.

Turbidity

	Limit								
	(Treatment Technique)	Level Detected	Violation	Likely Source of Contamination					
Highest single measurement	1 NTU	0.4 NTU	No	Soil runoff.					
Lowest monthly percentage (%) meeting limit	0.3 NTU	99.50%	No	Soil runoff.					
NOTE: Turbidity is a management of the claudiness of the water squeed by supported particles. We maniter it because it is a good indicator of water quality and the effectiveness									

NOTE: Turbidity is of our filtration.

Maximum Residual Disinfectant Level

Disinfectant Type	Year	Average Level of Quarterly Data	Lowest Result of Single Sample	Highest Result of Single Sample	MRDL	MRDLG	Units	Source of Chemical
Chlorine Residual (Chloramines)	2022	2.21	.5	3.7	4.00	<4.0	ppm	Disinfectant used to control microbes.
Chlorine Dioxide	2022	0.00	0	0.27	0.80	0.80	ppm	Disinfectant.
Chlorite	2022	0.145	0	0.72	1.00	N/A	ppm	Disinfectant.

NOTE: Water providers are required to maintain a minimum chlorine disinfection residual level of 0.5 parts per million (ppm) for systems disinfecting with chloramines and an annual average chlorine disinfection residual level of between 0.5 (ppm) and 4 parts per million (ppm).

Total Organic Carbon

The percentage of Total Organic Carbon (TOC) removal was measured each month and the system met all TOC removal requirements set.

Cryptosporidium and Giardia

Contaminants	Collection Date	Highest Level Detected	Range of Levels Detected	Units	Likely Source of Contamination
Cryptosporidium	2022	0	0 - 0	(Oo) Cysts/L	Human and animal fecal waste.
Giardia	2022	0	0 - 0	(Oo) Cysts/L	Human and animal fecal waste.

NOTE: Levels detected are for source water, not for drinking water. No cryptosporidium or giardia were found in drinking water.

City of Kaufman-CCR Water Quality Data for Year 2022 (Cont.)

	Lead and Copper										
Lead and Copper	Date Sampled	Action Level (AL)	90th Percentile	# Sites Over AL	Units	Violation	Likely Source of Contamination				
Lead	2022	15	0	0	ppb	N	Corrosion of household plumbing systems; erosion of natural deposits.				
Copper	2022	1.30	0.346	0	ppm		Erosion of natural deposits; leaching from wood preservatives; corrosion of household plumbing systems.				

ADDITIONAL HEALTH INFORMATION FOR LEAD: If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. [City of Kaufman] is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water rested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

Unregulated Contaminants

Contaminants	Collection Date	Highest Level Detected	Range of Levels Detected	Units	Likely Source of Contamination					
Chloroform	2022	11.6	10.4-28.00	ppb	By-product of drinking water disinfection.					
Bromoform	2022	1.49	<.100-1.66	ppb	By-product of drinking water disinfection.					
Bromodichloromethane	2022	12.3	5.99-16.00	ppb	By-product of drinking water disinfection.					
Dibromochloromethane	2022	8.01	3.34-8.78	ppb	By-product of drinking water disinfection.					
NOTE: Bromoform, chloroform, the entry point to distribution.	NOTE: Bromoform, chloroform, bromodichloromethane, and dibromochloromethane are disinfection by-products. There is no maximum contaminant level for these chemicals at									

Secondary and Other Constituents Not Regulated

Contaminants	Collection Date	Highest Level Detected	Range of Levels Detected	Units	Likely Source of Contamination		
Aluminum	2022	Levels lower than detect level	0 - 0	ppm	Erosion of natural deposits.		
Calcium	2022	69.8	32.2 - 69.8	ppm	Abundant naturally occurring element.		
Chloride	2022	107	30.0 - 107	ppm	Abundant naturally occurring element; used in water purification; by-product of oil field activity.		
Iron	2022	Levels lower than detect level	0 - 0	ppm	Erosion of natural deposits; iron or steel water delivery equipment or facilities.		
Magnesium	2022	9.70	9.61 - 9.70	ppm	Abundant naturally occurring element.		
Manganese	2022	0.159	0.004 - 0.159	ppm	Abundant naturally occurring element.		
Nickel	2022	0.0098	0.0069 - 0.0098	ppm	Erosion of natural deposits.		
pH	2022	9.2	7.0 - 9.2	units	Measure of corrosivity of water.		
Silver	2022	Levels lower than detect level	0 - 0	ppm	Erosion of natural deposits.		
Sodium	2022	95.4	26.5 - 95.4	ppm	Erosion of natural deposits; by-product of oil field activity.		
Sulfate	2022	171	84.2 - 171	ppm	Naturally occurring; common industrial by-product; by-product of oil field activity.		
Total Alkalinity as CaCO3	2022	139	69 - 139	ppm	Naturally occurring soluble mineral salts.		
Total Dissolved Solids	2022			Total dissolved mineral constituents in water.			
Total Hardness as CaCO3	2022	194	90 - 194	ppm	Naturally occurring calcium.		
Zinc	2022	Levels lower than detect level	0 - 0	ppm	Moderately abundant naturally occurring element used in the metal industry.		

Violations Table

Violation Type	Violation Begin	Violation End	Violation Explanation